Materialien für die Nano-Elektronik von morgen

Schmale Nanobänder für Graphen-Transistoren

21.07.2010 | MARTINA PETER
In der aktuellen «Nature»-Ausgabe berichten Forscher der Empa und des Max-Planck-Instituts für Polymerforschung, wie es ihnen erstmals gelungen ist, mit einer einfachen chemischen Methode wenige Nanometer breite Bänder aus Graphen auf Oberflächen wachsen zu lassen. Graphenbänder gelten als «heisse Kandidaten» für künftige Elektronikanwendungen, da sich – je nach Breite und Randform – ihre Eigenschaften einstellen lassen.
/documents/56164/279891/a592-2010-07-22-nanoribbons-b4m.jpg/1cb17d19-c263-494d-870b-bf8d872a64b7?t=1448305334397
 

Legende: Strukturmodell und dreidimensionale Darstellung der Rastertunnelmikroskop-Aufnahme eines zickzack-förmigen Graphen-Nanobandes.

 
Transistoren auf Graphenbasis gelten als mögliche Nachfolger für die heute gebräuchlichen Bauteile aus Silizium. Bestehend aus zweidimensionalen Kohlenstoffschichten besitzt Graphen etliche herausragende Eigenschaften: Es ist nicht nur härter als Diamant, extrem reissfest und undurchlässig für Gase, sondern auch ein ausgezeichneter elektrischer und thermischer Leiter. Weil Graphen allerdings ein Halbmetall ist, besitzt es – im Gegensatz zu Silizium – keine elektronische Bandlücke und somit keine Schalteigenschaften – DIE Hauptvoraussetzung für Elektronik-Anwendungen. Forscher der Empa und des Max-Planck-Instituts für Polymerforschung in Mainz sowie der ETH Zürich und der Universitäten Zürich und Bern entwickelten deshalb ein neues Verfahren, um Graphenbänder mit Bandlücken herzuzustellen.
 

 
Size: 147 KB
 

Schematische Darstellung der oberflächenchemischen Reaktionen, die es erlauben, Graphen-Nanobänder aufs Atom genau aufzubauen.

 

 

Graphenbänder im Nanometermassstab

Bis anhin wurden Bänder aus grösseren Graphenschichten «geschnitten», etwa so wie Tagliatelle aus einem Pastateig. Oder Kohlenstoffnanoröhrchen wurden der Länge nach aufgetrennt. In den Bändern entsteht dadurch über einen quantenmechanischen Effekt eine Bandlücke – ein Energiebereich, in dem sich keine Elektronen befinden können und der die physikalischen Eigenschaften wie etwa die Schaltfähigkeit bestimmt. Breite (und Randform) des Graphenbandes bestimmen die Grösse der Bandlücke und beeinflussen dadurch die Eigenschaften eines daraus konstruierten Bauteils.

Falls sich Graphenbänder nun extrem schmal – deutlich unter zehn Nanometer – und noch dazu mit wohl definierten Rändern herstellen liessen, so die Idee, dann könnten daraus Bauteile mit massgeschneiderten optischen und elektronischen Eigenschaften resultieren: Je nach Bedarf kann über die Manipulation der Bandlücke die Schalteigenschaft eines Transistors eingestellt werden. Alles andere als trivial, denn die bis jetzt dafür verwendeten lithografische Methoden, etwa zum Schneiden, stossen hier an fundamentale Grenzen; sie liefern zu breite Bänder mit diffusen Rändern.

 

 
Size: 248 KB
  Die einzelnen Reaktionsschritte der oberflächenchemischen Synthese von zickzackförmigen Graphen-Nanobändern, sowie Rastertunnelmikroskop-Aufnahmen der resultierenden Nanobänder.
 

 

Graphenbänder wachsen lassen

In der «Nature»-Ausgabe vom 22. Juli 2010 beschreiben die Forscher um Roman Fasel, Senior Scientist an der Empa und Professor für Chemie und Biochemie an der Universität Bern, und Klaus Müllen, Direktor am Max-Planck-Institut für Polymerforschung, eine einfache oberflächenchemische Methode, mit der sich derart schmale Bänder ganz ohne zu schneiden herstellen lassen – also «bottom-up», aus den Grundbausteinen. Dazu brachten sie unter Ultrahochvakuumbedingungen auf Gold- oder Silberoberflächen spezielle, an «strategisch» wichtigen Positionen halogensubstituierte Monomere auf, die sich in einem ersten Reaktionsschritt zu Polyphenylenketten verbanden.

In einem zweiten, durch stärkeres Erhitzen eingeleiteten Reaktionsschritt, in dem Wasserstoffatome entzogen wurden, koppelten die Ketten zu einem planaren, aromatischen Graphensystem. So entstanden atomar dünne Graphenbänder von einem Nanometer Breite und einer Länge bis zu 50 Nanometer. Damit sind die Graphenbänder so schmal, dass sie eine elektronische Bandlücke aufweisen und nun wie Silizium Schalteigenschaften besitzen – ein erster, wichtiger Schritt für den Wechsel von der Silizium-Mikro- zur Graphen-Nano-Elektronik. Doch damit nicht genug: Je nachdem, welche Monomere die Forscher verwendeten, bildeten sich Graphenbänder mit unterschiedlicher räumlicher Struktur – entweder gradlinige oder zickzackförmige.

 

 
Size: 72 KB
  Reaktionsschritte zur Herstellung eines Graphen-Nanobandes aus Bianthryl-Monomeren, sowie Rastertunnelmikroskop-Bilder der Reaktionsprodukte.
 

 

Untersuchungen zu weiteren Eigenschaften

Da die Forscher nun Graphenbänder (fast) nach Belieben herstellen können, möchten sie als nächstes untersuchen, wie sich etwa die magnetischen Eigenschaften der Graphenbänder in Abhängigkeit von den verschiedenartigen Rändern beeinflussen lassen. Die oberflächenchemische Methode eröffnet aber auch interessante Perspektiven hinsichtlich der gezielten Dotierung von Graphenbändern: Die Verwendung von Monomerbausteinen mit Stickstoff- oder Boratomen an genau definierten Positionen oder von Monomeren mit zusätzlichen funktionellen Gruppen müsste die Herstellung positiv und negativ dotierter Graphenbänder ermöglichen.

Auch eine Kombination verschiedenartiger Monomere ist möglich und könnte beispielsweise die Herstellung so genannter Heteroübergänge erlauben – Schnittstellen zwischen verschiedenartigen Graphenbändern, etwa mit kleiner und grosser Bandlücke –, die in Solarzellen oder Höchstfrequenzbauelementen zum Einsatz kommen könnten. Dass das zugrunde liegende Bauprinzip auch hierfür funktioniert, haben die Forscher bereits bewiesen: Mit zwei passenden Monomere haben sie mit einem Knotenpunkt drei Graphenbänder miteinander verknüpft.

Bis anhin konzentrierten sich die Forscher auf Graphenbänder auf Metalloberflächen. Damit die Graphenbänder allerdings für die Elektronik genutzt werden können, müssen diese auf Halbleiteroberflächen hergestellt oder Methoden entwickelt werden, um die Bänder von Metall- auf Halbleiteroberflächen zu übertragen. Und auch hierfür stimmen erste Ergebnisse die Forscher bereits zuversichtlich.

 
 


 

Literaturangaben

«Atomically precise bottom-up fabrication of graphene nanoribbons», J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature, 22 July 2010, Vol. 466, No. 7305, pp 470-473, doi:10.1038/nature09211

Das PDF-File kann bestellt werden bei .


 

Weitere Informationen

 

Redaktion / Medienkontakt